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3. EXAMPLES OF GROUPS 
 

§3.1. Abstract Groups and the Group 

Axioms 
 Before we surf the wide ocean of group theory let’s 

review the definition of a group so that we’ll easily 

recognise one when we come across it. 

 For Galois, a group involved the symmetry of 

certain algebraic expressions involving the zeros of a 

polynomial. After his death the concept was abstracted 

from its polynomial setting as the emphasis shifted to 

groups of ‘substitutions’ (as they were called at the time) 

or ‘permutations’ (as we refer to them now). The symbols 

being permuted could now can be anything, not just zeros 

of polynomials. This was the first stage in the process of 

abstraction. 

 A considerable body of theory was built up and 

many books were written on the subject until it was 

realised that almost every theorem could be derived from 

just four simple facts. That resulted in the process of 

abstraction being continued one stage further as groups 

and permutations were uncoupled. Now any algebraic 

system that behaves in a manner described by these four 

axioms could be called a group. 

 

 ‘Group’ is the name given to a certain type of 

algebraic structure that satisfies four basic properties 

called the group axioms or group laws. On the basis of 
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these axioms it’s possible to develop a considerable body 

of theory – group theory. We can prove theorems about 

groups without needing to know what they’re groups of, 

just by basing the proofs on these four axioms. 

 The advantage of this abstract approach is that we 

can deal with countless algebraic systems all at once. A 

single theorem in group theory immediately becomes a 

theorem for groups of matrices, groups of numbers, 

groups of permutations, and so on. 

 

A binary operation * on a set G is a function that 

associates with every ordered pair of elements a, b  G, a 

unique element of G, denoted by a * b. 

 

A group (G, *) is a set G together with a binary operation 

* such that: 

(1) Closure Law:   a * b  G for all a, b  G. 

(2) Associative Law: 

(a * b) * c = a * (b * c) for all a, b, c  G. 

(3) Identity Law:   There exists e  G such that: 

a * e = a = e * a  for all a  G. 

(4) Inverse Law:   For all a  G there exists b  G such 

that a * b = e = b * a. 

 

COMMENTS 

(1) The closure law is redundant because it’s implicit in 

the definition of a binary operation. However it’s 

usually included for emphasis. 
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(2) The element e is called the identity for G. We’ll show 

later that it must be unique, that is, a group can only 

have one identity for its operation. 

(3) The element b in the last axiom is called the inverse 

of a (under *). It too is unique. Every element has 

exactly one inverse. 

(4) The inverse of the inverse of an element is that 

element itself. 

 An abelian group G (so called to honour the 

Norwegian mathematician, Abel, whose work preceded 

Galois) is one that, in addition, satisfies the following: 

 

Commutative Law:  a * b = b * a for all a, b  G. 

 

§3.2. Subgroups 
 Groups are not isolated structures. Rather they’re 

nested, one inside another, like a set of Russian dolls. 

Open up a group and you’ll usually find lots of smaller 

groups living inside of it. They are called ‘subgroups’ of 

the larger group. 

 

A subset H of G is a subgroup if: 

(1)  a 
* b  H for all a, b  H; 

(2)  e (the identity element of G)  H; 

(3) the inverse of every element of H is in H. 

Notation: H  G. 
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NOTES: 

(1) We often summarise these by saying that H is closed 

under the operation, under the identity and under 

inverses. 

(2) These properties correspond to three of the four group 

axioms. The associative law doesn’t have to be 

verified for a subgroup because it holds throughout all 

of the group. So subgroups are groups in their own 

right. 

(3) The operations in H and G have to be the same. You 

can’t have a subset of a group of numbers under 

addition being a subgroup under multiplication. For 

example the group of positive real numbers under 

multiplication is not a subgroup of the group of all real 

numbers under addition. 

(4) Every group is a subgroup of itself. 

 

The order of a group G is its number of elements. 

If this is finite we say that G is a finite group. Otherwise 

it’s an infinite group. This distinction is important 

because the theories of finite groups and infinite groups 

use somewhat different methods. For example in finite 

group theory the divisibility properties of the natural 

numbers play an important role. 

 

Notation: The order of the group G is denoted by |G|. 
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 We’re now ready to go hunting for groups and 

we’ll find that they’re native to practically every 

continent of the world of mathematics. 

 

§3.3. Groups of Numbers 
 The easiest place to find groups is in the various 

number systems. Numbers can be both added and 

multiplied but if we focus our attention on just one of 

these we can produce examples of groups. And because 

the commutative law holds for addition and multiplication 

of numbers the groups we’ll get will all be abelian. 

 Let’s begin with (ℤ, +), the group of integers under 

addition. If you replace * in the group axioms by + you’ll 

see that they all hold. The identity, e, in this case is the 

number 0 and the inverse of  x  is  −x. 

 Now (ℤ, ) is not a group. The problem lies with 

inverses under multiplication. Not only does 0 fail to have 

an inverse, numbers such as 2 have no inverse, not within 

the system of integers at any rate, since ½ is not an 

integer. It’s not enough for an inverse to exist. It has to lie 

within the set under consideration. In fact the only 

integers which do have multiplicative inverses within ℤ 

are 1. 

 Within the group of integers under addition there’s 

the subgroup 2ℤ of even integers (even + even is even, 0 

is even and minus an even is even). Other subgroups are 

mℤ for any m, the multiples of a fixed integer m. 

 The rational numbers under addition form the 

group (ℚ, +) (for example rational plus rational is 
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rational) and (ℤ, +) is one of its many subgroups. Under 

multiplication (ℚ, ) almost qualifies. Only zero fails to 

have an inverse under multiplication. If we exclude zero, 

and denote the set of non-zero rationals by ℚ#, we do get 

a group. But note that we have to rethink the closure law. 

It’s no longer enough that the product of two rationals is 

a rational. We need the product of two non-zero rationals 

to be a non-zero rational. Fortunately this is so by the 

cancellation law for rationals: 

xy = 0 implies that x = 0 or y = 0. 

 One subgroup of (ℚ#, ) is the set of all powers of 

2: {2n | n  ℤ}. This is because 2m.2n = 2m+n, the identity 

under multiplication is 1 = 20 and (2n)−1 = 2−n. 

A really small subgroup of (ℚ#, ) consists just of 

1. An even smaller one is {1}. 

 In fact for any group G the subset {e}, consisting 

of just the identity, is a subgroup known as the trivial 

subgroup of G. Check it: 

(1) e * e = e; 

(2) {e} contains the identity; 

(3) the inverse of e is e. 

 

 Things work for the real and complex numbers in 

very much the same way. The group (ℂ, +) contains the 

subgroup (ℝ, +). Another subgroup is the set of imaginary 

numbers (including 0). Within (ℝ, +) you find (ℚ, +) and 

a subgroup of (ℚ, +) is (ℤ, +) etc. 

 The non-zero complex numbers under 

multiplication form the group (ℂ#, ) which in turn 
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contains (ℝ#, ). One of the many subgroups of (ℝ#, ) is 

(ℚ#, ) and (ℚ#, ) has within it the subgroup (ℚ+, ) of 

positive rationals. 

 

 For groups of numbers we usually omit the 

operation and just write ℚ or ℚ# etc. There’s no ambiguity 

because there’s a simple way to determine whether the 

operation is intended to be addition or multiplication, by 

a process of elimination. If the set contains zero, such as 

ℝ, it can’t be a group under multiplication because zero 

doesn’t have an inverse. But if zero is excluded it can’t be 

a group under addition because zero is the identity under 

addition and so must be included. 

 So 0  ℤ  ℚ  ℝ  ℂ and 1  ℚ+  ℚ#  ℝ#  ℂ#. 

Notice that it’s usual to denote the trivial subgroup by just 

0 or 1 depending on the operation. 

 Of course if the operation is neither addition nor 

multiplication, and there’s no reason why it has to be one 

or the other, then it must be spelt out explicitly. 

 Here’s a group of numbers where the operation is 

neither addition nor multiplication. 

 

Example 1:  Let G = {x  ℝ | x  −1} and define 

x * y = x + y + xy. 

Then (G, *) is a group. 

Closure: If x, y  G then x * y = (x + 1)(y + 1) − 1  −1 

so x * y  G. 
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Associative law: Since this is an operation we’ve never 

seen before we must check associativity: 

(x * y) * z = (x * y) + z + (x * y)z 

                = (x + y + xy) + z + (x + y + xy)z 

                = x + y + z + xy + xz + yz + xyz 

and x * (y * z) = x + (y * z) + x(y * z) 

                       = x + y + z + yz + x(y + z + yz) 

                       = x + y + z + xy + yz + xz + xyz. 

 

Identity: The identity is 0. 

Inverse: the inverse of x  G is 
−x

x +1
  since 

x + 
−x

x +1
  + x







−x

x +1
  = 0. 

Note that the denominator is non-zero since x  −1. 

Moreover, 
−x

x +1
  = −1 + 

1

x + 1
   −1. 

 

 Another type of number is an integer-modulo-m, 

for some positive integer modulus m. Under addition 

these give the groups (ℤm, +). Because the operation is 

different to ordinary addition (eg. 1 + 1 = 0 mod 2) they’re 

not subgroups of (ℤ, +). In fact none of them is a subgroup 

of any of the others. 

 Under multiplication we may have to exclude more 

than just 0. Consider ℤ10 under multiplication. The 

numbers 2, 4, 5, 6 and 8 fail to have inverses under 

multiplication because they’re not coprime to 10. For 

example if y was the inverse of 6 mod 10 then 6y would 



 131 

have to be 1 plus a multiple of 10, which is clearly 

impossible. 

 Only 1, 3, 7 and 9 have inverses mod 10 and these 

inverses are 1, 7, 3 and 9 respectively. [Remember, for 

example, that 3.7 = 21 = 1 mod 10.] 

Moreover the set {1, 3, 7, 9} is closed under 

multiplication as can be seen if we write out the group 

table: 

   ℤ10
# 1 3 7 9 

1 1 3 7 9 

3 3 9 1 7 

7 7 1 9 3 

9 9 7 3 1 

The associative law holds because it holds for integers. So 

we get a group. 

 

 We denote the set of invertible elements of ℤm (the 

ones that have inverses, or equivalently, are coprime to 

m) by ℤm
#. This will always be a group because the 

product of two invertible elements is invertible. 

 

Now the group ℤ12
# also has four elements {1, 5, 7, 11} 

and the group table is: 
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ℤ12
# 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

 

In Chapter 1 we encountered the mattress group which 

also has order 4.  Its table is: 

 

 I A B C 

I I A B C 

A A I C B 

B B C I A 

C C B A I 

 

 Which of the tables, the one for ℤ10
# or the one for 

ℤ12
# does this most resemble?  The answer is ℤ12

#.  The 

mattress group and ℤ12
# follow the same pattern: 

everything squared is the identity and the product of any 

two of the non-identity elements is equal to the third. In 

fact we can turn one table into the other by the code 

I → 1, A → 5, B → 7, C → 11. 

 The group ℤ10
# on the other hand is rather different. 

It can’t be changed into the mattress group by any 

relabelling. The most obvious difference is that in ℤ10
# 

there are only 2 solutions to the equation x2 = 1 while in 

both the mattress group and ℤ12
# all four elements satisfy 

this equation. 
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 If two groups have essentially the same structure, 

meaning that the group table for one can be turned into 

the table for the other by a suitable renaming, we say that 

the groups are isomorphic. So ℤ12
# is isomorphic to the 

mattress group but neither of these is isomorphic to ℤ10
#. 

(We’ll define isomorphism a little more formally later.) 

 So there are at least two, essentially different, 

groups of order 4. In fact, as we’ll see later, these are the 

only two. There are only finitely many groups with any 

given finite order (up to isomorphism) and one of the 

fundamental problems of finite group theory is to classify 

them. 

 

§3.4. Groups of Permutations 
 The symmetric group, Sn, is the group of all 

permutations on {1, 2, … , n}. An important subgroup is 

the alternating group, An, the group of all even 

permutations. 

 Another subgroup of Sn is the set H of all 

permutations that fix the symbol 1. 

 The elements of H permute the remaining elements 

2, 3, ... , n  in all the (n − 1)! possible ways. By 

renumbering these symbols as 1, 2, ... , n − 1 we can turn 

this group into a copy of Sn−1.  In other words H is 

isomorphic to Sn−1. 

 

 An important subgroup of S4 is called the Klein 

group (after the mathematician Felix Klein) or the 

Viergruppe (German for the ‘four-group’). It’s often 
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denoted by V4 which is a bit silly in a way because both 

the V for ‘vier’ and the 4 tell us that there are four 

elements: V4 = {I, (12)(34), (13)(24), (14)(23)}. 

 

Its group table is: 

 

V4 I (12)(34) (13)(24) (14)(23) 

I I (12)(34) (13)(24) (14)(23) 

(12)(34) (12)(34) I (14)(23) (13)(24 

(13)(24) (13)(24) (14)(23) I (12)(34) 

(14)(23) (14)(23) (13)(24) (12)(34) I 

 

 Notice that once again this has the same pattern as 

both ℤ12
# and the mattress group. V4 is a permutation 

group that’s isomorphic to these other groups. 

 For many decades groups were only groups of 

permutations. Introducing the group axioms freed us from 

this connection and enabled us to look for groups 

anywhere. But in fact it didn’t really lead us to find any 

extra groups, just different disguises for the same groups. 

This is because every group is isomorphic to a group of 

permutations. Multiplication of the elements of a group G 

by a fixed element is a permutation and these 

permutations form a group that’s isomorphic to G. 

 This is known as Cayley’s Theorem and we’ll give 

a formal proof of it later once we’ve defined the word 

‘isomorphic’ properly. But you can see it working in the 

following example. 
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 Take the group ℤ12
#: 

 

ℤ12
# 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

 

Multiplication on the right by 5 permutes these four 

elements in a way that can be described in cycle notation 

as (1 5)(7 11). The corresponding permutations for all 

four elements are: 

 

1 I 

5 (1 5)(7 11) 

7 (1 7)(5 11) 

11 (1 11)(5 7) 

 

 Now relabelling the elements of ℤ12
# by the code: 

1→1, 5→2, 7→3, 11→4 these four permutations become 

I, (12)(34), (13)(24), (14)(23), the elements of V4. 

 

§3.5. Groups of Polynomials, Functions 

and Vectors 
 Polynomials can be added and subtracted, and the 

set of all polynomials in x over a field F forms an abelian 

group F[x]. Polynomials can also be multiplied but we 
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don’t get a group, even if we exclude the zero polynomial, 

because expressions such as 
1

x + 1
  are not polynomials. 

 

Functions f: ℝ → ℝ can be added, and again we get 

an abelian group.  Multiplying functions, in the way that 

we might multiply the functions f(x) = x2 and g(x) = sin x 

to get the function f(x)g(x) = x2sin x, raises problems with 

inverses. For example g doesn’t have an inverse. What 

about cosec x = 
1

sin x
 ? That’s not a function from ℝ to ℝ 

since it’s undefined when x = n for any integer n. 

But there’s another way of multiplying functions – 

function of a function. For any set X, if we have two 

functions f, g from X to X we can form their product fg, 

defined by (fg)(x) = g(f(x)), that is, we first apply  f  and 

then apply  g. If f(x) = x2 and g(x) = sin x then the product  

fg  is the function (fg)(x) = sin(x2), while gf is the function 

(gf)(x) = (sin x)2, which we normally write as sin2x. 

Clearly, if we do get a group out of this it will be non-

abelian. 

In fact the groups we get out of this operation are 

the familiar groups of permutations on a set X. But X will 

be mostly infinite and in such cases the examples will 

look rather different to the usual permutation groups. 

Here’s an example of a finite group of permutations on an 

infinite set. 
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Consider the functions: 

a(x) = x, 

b(x) = 1 − x, 

c(x) =  
1

x
 , 

d(x) = 
1

1 − x
 , 

e(x) =  
x − 1

x
 , 

f(x) = 
x

x − 1
 . 

Since these are undefined for x = 0 and x = 1 we must 

exclude these values from the domain. So let’s take X to 

be the set ℝ − {0, 1}, that is, the set of all real numbers 

excluding 0 and 1. Not only are all the above defined for 

every x  X, a quick check will reveal that their range is 

also X and that these are 1-1 and onto functions on X. 

Now d 2(x) = d(d(x)) = 
1

1 − 
1

1 − x

 = 
x − 1

x
 = e(x) and 

                     (bd)(x) = 
1

1 − (1 − x)
  =  

1

x
 = c(x) 

so that d 
2 = e and bd = c. 

We can complete the group table for this group of order 

6: 
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 a b c d e f 

a a b c d e f 

b b a d c f e 

c c e a f b d 

d d f b e a c 

e e c f a d b 

f f d e b c a 

 

Note that d 
3 = de = a, the identity, so d has order 3, 

b2 = a, and so d has order 2, and bd = c = eb = d−1b. 

So this group is isomorphic to the dihedral group 

D6 = A, B | A3 = 1, B2 = 1, BA = A−1B, 

with A corresponding to  d  and B corresponding to  b.   

 

 Among the axioms for a vector space V, over a 

field F, are the group axioms for V to be a group under 

addition. In fact if we ignore scalar multiplication, vector 

spaces are just abelian groups. So we can produce 

examples of abelian groups by taking the set of all vectors 

(x1, x2, ... , xn) with each xi  F, under the operation of 

addition. 

 If we want to get a finite group we’d need to take F 

to be a finite field, of which the best-known examples are 

the integers modulo a prime. 

 We denote the set of all vectors (x1, x2, ... , xn), with 

each xi  ℤp by 

ℤp  ℤp  ...  ℤp (n copies of ℤp). 

We will explain the full meaning of the symbol  in a 

later chapter. 
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But since we’re only adding these components 

there’s no need for them to come from a field. In other 

words p need not be prime. 

 ℤ6  ℤ6  ℤ6 is the set of all vectors of the form (x, 

y, z) where x, y, z  ℤ6.  With 6 choices for each 

component this gives a group of order 63 = 216. It isn’t 

even necessary for the modulus to be the same for each 

component. So ℤ4  ℤ6  is a group, under addition, of 

order 24, consisting of all vectors  (x, y)  where 

x  ℤ4 and y  ℤ6. 

Here (3, 5) + (2, 4) = (1, 3) since 3 + 2 = 1 (mod 4) and 5 

+ 4 = 3 (mod 6). 

 

§3.6. Groups of Matrices 
 If F is a field GL(n, F) denotes the group of all 

invertible n  n matrices over F under multiplication.  The 

phrase ‘over F’ means that the components come from F 

and ‘under multiplication’ means that the operation is 

matrix multiplication. 

 This group is called the general linear group of 

degree n over F. Checking the axioms needs a little non-

trivial knowledge about matrices. We know that the 

associative law holds for matrix multiplication. Checking 

the closure law requires us to know that the product of 

two invertible matrices is invertible. And we need to 

know more than just the fact that every invertible matrix 

has an inverse. We need to observe that such an inverse is 

itself invertible. 
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 An interesting subgroup of GL(n, F) is T+(n, F) the 

set of all n  n upper-triangular matrices over F, that is, 

n  n matrices of the form: 











a11 a12 a13 ...  a1n

0  a22 a23 ...  a2n

0  0  a33 ...  a3n

...  ...  ...  ...  ... 

0 0 0  ...  ann

  

where each diagonal component is non-zero. 

 Check out for yourself that this set is closed under 

multiplication and that the inverse of any one of these 

matrices again has the same form. 

 Then there are the lower triangular matrices 

T−(n, F) which are the transposes of the upper triangular 

ones. The intersection of these are the invertible diagonal 

matrices D(n, F). 

 It’s closed under multiplication, identity and 

inverses simply because each of T+(n, F) and T−(n, F) are. 

This is a special case of the general fact that: 

 

The intersection of any collection of subgroups is 

itself a subgroup. 

 

 Within D(n, F) we have the non-zero scalar 

matrices S(n, F). These are simply the diagonal matrices 

that have the same non-zero entry down the diagonal, that 

is, non-zero scalar multiples of the identity matrix. 
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 Another interesting subgroup of T+(n, F) is the 

group of uni-upper-triangular matrices UT+(n, F). 

These are the upper-triangular matrices with 1’s down the 

diagonal: 

 











1  a12 a13 ...  a1n

0  1  a23 ...  a2n

0  0  1  ...  a3n

... ...  ...  ...  ... 

0 0 0  ...  1

  

And inside T−(n, F) we have the uni-lower-triangular 

matrices UT−(n, F). 

We can summarise the connections between these 

subgroups in a so-called ‘lattice diagram’: 

 

                                      GL(n, F) 

 

 

                        T+(n, F)                   T−(n, F) 

 
 

                                         D(n, F) 

 

                        UT+(n, F)                 UT−(n, F) 
 

                                           S(n, F) 

 
                                              1 

 Here the lines indicate subgroup relationships, with 

the lower group being a subgroup of the group at the 

higher end of the line. 
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 Another very important subgroup of GL(n, F) is 

SL(n, F) consisting of all the matrices with determinant 

1. It’s called the special linear group of degree n over 

F. We could incorporate this into our lattice of subgroups 

but including its intersections with the other subgroups 

would make the diagram very messy. 

 

 The lattice of subgroups of a group G is such a 

picture of all its subgroups.  One subgroup is contained in 

another if and only if there is an ascending path in the 

diagram from the smaller to the larger.  The intersection 

of two subgroups is the largest subgroup contained in 

them both and is easily picked out from the diagram. 

 

 If F is a finite field, such as ℤp we get a finite group. 

The group GL(n, ℤp) is generally written as GL(n, p). 

 Matrix groups provide a very rich source of 

examples of groups, both abelian and non-abelian. In fact, 

since every finite group is isomorphic to a group of 

permutations, and every permutation can be represented 

by a permutation matrix it follows that every finite group 

is isomorphic to some matrix group. This fact provides 

the basis for representation theory which we’ll study in a 

later chapter. 

 

§3.7. Symmetry Groups 
 Symmetry can be found in many places, in art, 

graphic design, music, architecture, in the natural world 

and in science. And there are many types of symmetry. 
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There’s the mirror symmetry we expect to find in the 

human face, there’s the rotational symmetry such as you 

find in many flowers and the translational symmetry 

that’s found in a repetitive piece of music or a recurring 

decimal expansion. Sometimes the symmetry is a 

combination of translational, rotational and mirror 

symmetry as in a honeycomb or a brick wall. 

 Poetry exhibits aspects of symmetry in its rhyming 

patterns and physical laws involve symmetry. Even 

asymmetry makes use of symmetry for its effect relies on 

our unsatisfied expectation of symmetry. 

 

 But what really is symmetry? The most useful 

definition is in terms of operations that keep something 

the same. The human face is never exactly symmetrical, 

but we imagine it to have mirror symmetry about a 

vertical axis of symmetry. If reflected 

left-to-right in this axis a face appears to 

be the same. The reflection operation is 

therefore a symmetry operation for the 

face. 

 

 So whenever we have an axis of 

symmetry we have a symmetry 

operation. In this case the symmetry is 

mirror symmetry (though for a 2-

dimensional shape we can also think of it as a 180° 

rotation in a third dimension). But, as we saw with the 

square there’s rotational symmetry as well. 
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 The infinite pattern of bricks below exhibits two 

other forms of symmetry, translational symmetry and 

glide symmetry. A translation is a movement in a 

certain distance by a certain 

amount and if an infinite 

pattern is fixed by such a 

translation it is said to have 

translational symmetry. The 

brick pattern has horizontal 

translational symmetry through 

one brick length (or any integer multiple of this distance). 

 

 A glide is a reflection in an axis followed by a 

translation along that axis. The brick pattern has 

horizontal axes of symmetry running through the 

midpoints of the bricks but the lines which run between 

the rows of bricks are not mirror axes. Yet if you reflect 

in such a line and then translate by half a brick length, the 

pattern snaps back into place.  So the pattern is fixed as a 

whole by this glide. A set of footprints only has glide 

symmetry. 

 

 Isometries are distance-preserving functions. They 

include reflections, rotations, translations and glides (in 

two dimensions these are the only isometries). A 

symmetry operation for a shape is an isometry that fixes 
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the shape as a whole. While individual points are moved 

by the operation the whole shape occupies exactly the 

same region of space. 

 It’s clear that if you multiply one symmetry 

operation by another (that is, follow one by another) you 

get a symmetry operation. The identity is always a 

symmetry operation and the inverse of a symmetry 

operation is a symmetry operation. So the set of all 

symmetry operations for a shape forms a group, called the 

symmetry group of the shape. 

 

Castle Turrets: 

 The machicolations on a castle wall form the 

jagged outlines from which archers can fire their arrows. 

An infinitely long pattern of this type has translational 

symmetry in that if you translate the pattern through a 

certain distance it remains unchanged – each turret just 

gets moved on to the next. 

 There’s also reflectional symmetry in the infinitely 

many vertical axes of symmetry (the horizontal axis is not 

an axis of symmetry). Then there’s 180° rotational 

symmetry about the centres indicated by the dots. Finally 

there is what is called glide symmetry along the 

horizontal axis. Reflecting the pattern of turrets in the 

horizontal axis and then translating half a turret distance, 

every point on the pattern is moved to an equivalent one. 
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 The sine curve also exhibits this same type of symmetry. 

 If T is the 

translation that takes 

each peak to the next 

on its right, R is the 

180 rotation about 

one of the points 

where the curve cuts 

the x-axis, M is the 

reflection in the 

vertical axis immediately to the right of this point and G 

is the glide that takes each peak to the next trough to the 

right then: 

T = G2, R = GM, M2 = I and GM = MG−1. 

The symmetry group of this pattern is generated by G and 

M alone and is in fact the infinite dihedral group 

G, M | M 2 = 1, GM = MG−1. 

 

Railway lines: 

 A set of railway tracks is another infinite repeating 

pattern. But unlike the sine curve or the castle turrets, the 

horizontal axis is an axis of reflectional symmetry and not 

just an axis of glide symmetry. 

 As well, there are infinitely many vertical axes of 

symmetry and infinitely many centres of 2-fold, that is 

180°, rotational symmetry. And finally there are glides 

built up from these reflections and translations. 
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 If T denotes the translation that takes each ‘railway 

sleeper’ to the next on the right, H the reflection in the 

horizontal axis and V the reflection in one of the vertical 

axes of symmetry then the group of symmetries is the 

infinite group 
T, H, V | H 2 = V 2 = 1, TH = HT, TV = VT−1, HV = VH. 

 

 The people who are most interested in symmetry 

groups, particularly for 3 dimensional patterns, are 

crystallographers. Crystallography is the branch of 

chemistry that deals with the possible crystal lattices for 

various substances and the crystallographers long ago 

classified all possible symmetry groups in 2 and 3 

dimensions. 

 

§3.8. Group Tables 
 A finite group can be described by displaying its 

group table as follows: 

 

The set {a, b, c} becomes a group under the binary 

operation defined by the following table. 

  

*       y 

 

x 

………….. 

... x*y ........ 

………….. 
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* a b c 

a a b c 

b b c a 

c c a b 

 

 Given a table, however, it’s not always easy to 

verify that it’s a group table. The closure, identity and 

inverse axioms are easy to check but the associative law 

would involve a considerable amount of laborious 

checking. The quickest way to check the associative law 

is in fact to construct a group (where you know the 

associative law holds) and show that it’s isomorphic to 

the one in the given table. 

 For example, to show that the above table is a group 

table we would need to check that (xy)z = x(yz) for 27 

combinations of x, y and z. But we can instead observe 

that G = {1, , 2} is a group under multiplication, where 

 = e2i/3 is a non-real cube root of unity and that the code 

1→a, →b, 2→c transforms the group table for G to the 

one above. 

 

§3.9. Group Presentations 
 The above group can be described very concisely 

by the notation A | A3 = 1.  This is called a presentation 

for the group with the first part being a list of generators 

(in this case there’s just one). A set of generators is a 

subset of the group such that every element is a product 

of powers of the generators. The second part of the 
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description is a list of the relations that generate all the 

relations that hold between the generators. 

 The relation A3 = 1 is not the only relation that 

holds in this group. We also have A6 = 1, A9 = 1, ... not to 

mention A−3 = 1, A−6 = 1, ... But all of these are 

consequences of the given one and so they may be 

omitted. 

 The trivial group also has a generator A such that 

A3 = 1, so why doesn’t this notation refer to that group as 

well? The assumption is not simply that the given 

relations hold in the group but that any relation which 

does hold is a consequence of the stated ones. In the trivial 

group we also have A = 1 and A2 = 1, but these can’t be 

deduced from the relation A3 = 1. 

 This is only a fairly informal definition of 

presentations, but it will suffice for now. A more rigorous 

definition in terms of quotient groups of free groups will 

be given in a later chapter. 

 The relations can always be put in the form R = 1, 

though it’s not always convenient to do so. When a 

relation is expressed in this form the expression R is 

called a relator and often just the relator is given. So the 

above group could be expressed as A | A3. 

It’s even permissible to mix relators and relations 

in the same presentation.  The Klein group, V4, has the 

presentation A, B | A2, B2, AB = BA. 

Other presentations for V4 are 

A, B | A2, B2, (AB)2 and 

A, B, C | A2, B2, C2, AB = C = BA. 
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Here you see yet another small variation in the notation 

as a shortcut, that of having a chain of equalities. 

 

 A very common presentation for the dihedral group 

of order 8 is: 

D8 = A, B|A4, B2, BA = A−1B. 

More generally the dihedral group of order 2n can be 

defined by the presentation: 

D2n = A, B | An, B2, BA = A−1B. 

 In principle all the information about a group is 

locked up in such a compact presentation but it isn’t 

always easy to release it. For many presentations, such as 

the one above for the dihedral group, we can argue that 

every element has the form ArBs for some integers r, s. 

That is because the relation BA = A−1B can be interpreted 

by saying that if we move a B past an A, the B doesn’t 

change but the A is inverted. 

 Now a typical element of the group is a product of 

powers of the generators A and B, such as A5BA−2B3A.  

Using the relation BA = A−1B we can move all the B’s 

past all the A’s to the back. The relation acts a bit like the 

commutative law, except that the power of A will not 

simply be the sum of all the powers scattered throughout 

the expression. For this example we’d have 

A5BA−2B3A = A5A2BB3A = A7B4A = A7AB4 

(the last A gets inverted 4 times by B4 so remains as A) 

                                                     = A8B4. 

 Of course since B2 = 1 this simplifies further to A8 

and if n is 8 or less we could reduce this further. But 
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whenever you have a relation of the form BA = AkB 

anything generated by A and B can be expressed in the 

form ArBs. 

 For the dihedral group A, B | An, B2, BA = A−1B 

a typical element can be put in the form ArBs where: 

0  r < n and s = 0 or 1. 

Moreover these 2n expressions represent distinct 

elements so we can infer that the group has order 2n. 

 With the elements written as: 

1, A, A2, ... , An−1, B, AB, A2B, ... , An−1B 

we can prepare a group table. To multiply any pair of 

elements we simply use the rule (valid for dihedral groups 

but not for groups in general) that moving a B past an A 

inverts the A but leaves the B unchanged. For example 

A5BA3 = A5A−3B = A2B. And once we have the group 

table we can investigate the properties of the group fully. 

 Things are not always that easy. Given a very 

complicated presentation we may not even be able to 

decide whether the group is finite or infinite, or even 

whether the group has more than one element! 

 

 The Word Problem for groups asks the following: 

 

WORD PROBLEM 

Find an algorithm which can determine whether a 

given word in a group described by a given 

presentation is equal to the identity. 
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 The Word Problem is unsolvable. It’s not simply 

that nobody has yet found such an algorithm. No, a proof 

has been given that no such algorithm can possibly exist! 

 Fortunately in practice things are not quite so 

gloomy. There’s an algorithm, called the Todd Coxeter 

algorithm which mostly works. (We’ll visit it in a later 

chapter.) It’s an algorithm that isn’t completely 

deterministic in that at one place in each cycle a choice 

has to be made. Make a good choice each time and you’ll 

get an answer. The algorithm is reliable in the sense that 

you’ll never get a wrong answer.  But it may fail to 

terminate. 

 

 An important class of groups are the free groups. 

These are groups with generators but no relators. The free 

group on one generator is A| , which is isomorphic to ℤ, 

with An → n. It can be denoted by F1. 

 The free group on 2 generators, F2 can be presented 

as A, B| . The elements are words on A, B and their 

inverses and every element is expressible as a unique 

reduced word, that is a word in which adjacent pairs of a 

generator and its inverse are removed. Multiplication is 

by concatenation followed by cancelling adjacent pairs of 

generators and inverses. 

 

Example 2: 

In A, B| , ABA−1B  B−1ABBA−1 = ABBBA−1
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EXERCISES FOR CHAPTER 3 

 

EXERCISE 1: Which of the following subsets of ℤ are 

groups under addition? 

A = the set of even integers; 

B = the set of odd integers; 

C = the set of non-negative integers; 

D = {0}; 

E = the set of integers which are expressible as 42m 

+ 1023n for integers m, n. 

 

EXERCISE 2:  Which of the following subsets of ℂ are 

groups under multiplication? 

A = the set of non-zero rational numbers; 

B = the set of positive integers; 

C = {1, −1, i, −i}; 

D = {1, ½, 2}; 

E = {a + bia > 0}; 

F = {1, , 2, 3, ... }. 

 

EXERCISE 3: Let G = {x  ℝ | x  1} and define 

x * y = xy − x − y + 2. 

Prove that (G, *) is a group. 

 

EXERCISE 4: 

Prove that {I, (12), (345), (354), (12)(345), (12)(354)} is 

a group. 
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EXERCISE 5: 

Jack and Jill are going out together, as are Romeo and 

Juliet. Tonight they’re going out on a double date, with 

Jack and Jill sitting in the front seat of their red 

convertible and with Romeo and Juliet cuddling in the 

back. It’s a long drive and so every so often they stop and 

change drivers. But at all times Jack and Jill must sit 

together and so must Romeo and Juliet, so not every 

permutation on the set {Jack, Jill, Romeo, Juliet} is 

permitted. Show that the permutations that keep each 

couple together form a group. 

 

 

 

 

 

 

 

 

 

 

 

 

EXERCISE 6: Which of the following are groups under 

polynomial addition: 

(a) The set of all real polynomials that have x − 1 

as a factor; 

(b) The set of all real polynomials of even degree, 

together with 0; 

4 3 

2 1 
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(c) The set of all integer polynomials whose sum of 

coefficients is even; 

(d) The set of all integer polynomials where every 

coefficient is odd. 

 

EXERCISE 7: In the group ℤ4  ℤ5  ℤ10 perform the 

following additions: 

(a) (3, 2, 7) + (2, 1, 8); 

(b) (0, 4, 2) + (1, 4, 3); 

(c) (2, 3, 4) + (2, 2, 6). 

 

EXERCISE 8: Show that the set of all real matrices of 

the form  






1 x

0 1
  is a group under matrix multiplication. 

Does it satisfy the commutative law? 

 

EXERCISE 9: Find the rotation group of a 

parallelogram: 

 

 

 

 

EXERCISE 10: Find the rotation group of a diamond 

shape and write out its group table. 
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EXERCISE 11: Find the rotation group of the insignia of 

the Isle of Man: 

EXERCISE 12: Find the rotation groups of the letters of 

the alphabet (use the most symmetric possible way of 

writing each letter). 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
 

EXERCISE 13: Find the symmetry group of a regular 

hexagon. 

 

 

 

 

EXERCISE 14: Find the order of the rotation group of a 

tetrahedron (triangular pyramid with four identical 

equilateral triangular faces). 
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EXERCISE 15: Find the order of the rotation group of a 

cube. 

 

 

 

 

EXERCISE 16: Find the rotation group of the following 

shape: 

                                    
EXERCISE 17:  G is a group given by the following 

group table: 

 A B C D E F 

A A B C D E F 

B B A D C F E 

C C E A F B D 

D D F B E A C 

E E C F A D B 

F F D E B C A 

 

Calculate the following: 

(a) BD; 

(b) FACE; 

(c) E−1; 

(d) D2B3FE−1; 

(e) (BC)−2BF. 
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EXERCISE 18: Find all possible group tables on the set 

{1, a, b} where  1  is the identity. 

 

EXERCISE 19: Construct the group table for the group 

A | A3. 

 

EXERCISE 20: In the group 

A, B, C | A7, B3, C2
, BA = A3B, CA = AC, CB = B2C 

express each of the following in the form AqBrC s 

(a) (BC)2; 

(b) B2A3; 

(c) C3A−2; 

(d) (ABC)−1; 

(e) (AB)3. 

 

EXERCISE 21 

Let X be a set and let  X denote the set of all subsets of 

X. For R, S  X define R • S = (R  S) − (R  S). 

(a) Prove that (X, •) is an abelian group. 

(b) What is the greatest order of any element of X? 

HINT: R • S = {x | x belongs to exactly one of R, S}. 
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SOLUTIONS FOR CHAPTER 3 
EXERCISE 1: 

A, D, E 

 

EXERCISE 2: 

A, C 

 

EXERCISE 3: 

Closure: Let a, b  G, so a  1 and b  1. 

Suppose a * b = 1. 

Then ab − a − b + 2 = 1 and so (a − 1)(b − 1) = 0 which 

implies that a =  1 or b = 1, a contradiction. 

Associative:  Unlike the examples in exercise 1, this is a 

totally new operation that we have never encountered 

before. We must therefore carefully check the associative 

law. 

(a * b) * c = (a * b)c − (a * b) − c + 2 

                = (ab − a − b + 2)c − (ab − a − b + 2) − c + 2 

                = abc − ac − bc + 2c − ab + a + b − 2 − c + 2 

                = abc − ab − ac − bc + a + b + c 

Similarly a * (b * c) has the same value (we can actually 

see this by the symmetry of the expression. 

Identity: An identity, e, would have to satisfy: e * x = x 

= x * e for all x  G, that is: 

ex − e − x + 2 = x, or (e − 2)(x − 1) = 0 for all x. 

Clearly e = 2 works. We can now check that 2 is indeed 

the identity. 
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Inverses:  If x * y = 2, then xy − x − y + 2 = 2. 

So y(x − 1) = x + 2 and hence y = 
x + 2

x − 1
 . 

This exists for all x  1, i.e. for all x  G.  But we must 

also check that it is itself an element of G.  Clearly this is 

so because 
x + 2

x − 1
   1 for all x  1. 

 

EXERCISE 4: 

The group table is 

 I (12) (345) 

I I (12) (345) 

(12) (12) I (12)(345) 

(345) (345) (12)(345) (354) 

(354) (354) (12)(354) I 

(12)(345) (12)(345) (345) (12)(354) 

(12)(354) (12)(354) (354) (12) 

 

 (354) (12)(345) (12)(354) 

I (354) (12)(345) (12)(354) 

(12) (12)(354) (345) (354) 

(345) I (12)(354) (12) 

(354) (345) (12) (12)(235) 

(12)(345) (12) (354) I 

(12)(354) (12)(345) I (345) 

 

From this we can see that the set is closed under 

multiplication, and the fact that I appears in every row and 
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column shows that every element has an inverse.  The set 

contains the identity permutation.  Since multiplication of 

permutations is associative all four group axioms hold. 

 

EXERCISE 5: 

One way is to represent the four young people by real 

numbers xJack, xJill, xRomeo and xJuliet and to consider the 

algebraic expression E = xJack.xJill + xRomeo.xJuliet.  The 

permissible permutations that are allowed are those that 

keep the value of E unchanged.  This is clearly a group. 

 

Or we can number the positions as follows: 

 

 

 

 

 

 

 

 

 

 

The permissible permutations are: I, (12), (34), (12)(34), 

(13)(24), (14)(23), (1324), (1423). These are the same 

permutations in the symmetry group of the square 

 

 

 

 

4 3 

2 1 

1 

2 

3 

4 
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EXERCISE 6: 

(a), (b), (c) 

 

EXERCISE 7: 

(a) (1, 3, 5),   (b) (1, 3, 5),   (c) (0, 0, 0). 

 

EXERCISE 8: 

Closure: 






1 x

0 1
  







1 y

0 1
   = 







1   x + y

0    1
   so the set is closed 

under multiplication. 

Identity: I = 






1 0

0 1
  belongs to this set. 

Inverses: The inverse of 






1 x

0 1
   is  







1 −x

0  1
  , which belongs 

to this set. 

 

The commutative law clearly holds, so this is an abelian 

group. 

 

EXERCISE 9: 

G = {I, R} where R is a 180° rotation. 

NOTE: A parallelogram has no axes of symmetry unless 

it is a more symmetrical parallelogram such as a rhombus 

or a rectangle. 

  

R
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EXERCISE 10: 

G = {I, R, D, E} where R is a 180° rotation about the 

centre and D, E are 180° rotations about the axes 

indicated. 

 

 

 

 

 

 

 

 

The group table is: 

 

EXERCISE 11: 

G = {I, R, R2} where R is a 120° rotation about the centre 

and R2 is a 240° rotation. 

 

EXERCISE 12: 

 Each of A, B, C, D, E, K, L, M, T, U, V, W has one axis 

of symmetry (vertical for A, M, T, U, V, W diagonal for L 

assuming both arms have the same length, and horizontal 

for B, C, D, E, K) so their rotation groups are 

{I, R} where R is a 180° flip about these axes. 

 I R E D 

I I R E D 

R R I D E 

E E D I R 

D D E R I 

D 

R 

E 
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 The letters N, S and Z also have this group as their 

rotation group but this time R is a 180° rotation about the 

centre. 

 The letters F, G, J, Q and R have ‘no symmetry’, but 

since everything has the identity operation as a symmetry 

operation, their rotation group is just {I}. 

 The letters H and I have the same symmetry as a 

rectangle: {I, H, V and R} where H, V and R are a 180° 

rotations about the horizontal axis, the vertical axis and 

the centre, respectively. 

 The rotation group of the letter X (if the axes are at 

right angles) is the same as that of the square, that is, the 

dihedral group of order 8 and the rotation group of the 

letter Y (assuming the arms are 120 degrees apart) is D6. 

 The letter O, represented by a circle, has an infinite 

symmetry group. Any line through the centre is an axis of 

symmetry and any rotation about the centre is a symmetry 

operation. 

 

EXERCISE 13: 

G = {I, R, R2, R3, R4, R5, A, B, C, D, E, F} where R is a 

60° rotation about the centre and A to F are 180° rotations 

about the six axes of symmetry. 

 

EXERCISE 14: 

There is 3-fold symmetry. Rotations through 120° and 

240° about each of the four axes from a vertex to the 

midpoint of the opposite face are in the rotation group. 

 

A

B

C
D

E

F

 
A

B

C

D
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Less obvious is the 2-fold symmetry. Rotations through 

180° about each of the three axes that join the midpoint of 

each edge to the midpoint of its opposite edge are in the 

rotation group. 

The rotation group thus has order 12: 

one identity 

eight 3-fold rotations (2 about each of 4 axes) 

three 2-fold rotations (1 about each of 3 axes) 

 

EXERCISE 15: The most obvious symmetry is the 4-

fold rotational symmetry  about  each  of  the  three  axes  

that  join  the centre of one face to the centre of the 

opposite face. For each such axis we have three rotations: 

90°, 180° and 270°), giving us 9 rotations. Then there are 

the 2-fold rotations about the axes that join the midpoints 

of the edges. There are 6 such axes, each associated with 

one rotation. Finally there are the rotations about the three 

diagonals joining each vertex to the opposite vertex. If 

you examine the three edges that come out of each vertex 

you will see that there is 3-fold rotational symmetry about 

these diagonal axes. That is, a 120° or a 240° rotation 

about one of these axes returns the cube to a similar 

orientation. This gives 2 symmetry operations for each of 

4 axes, a total of 8 symmetry operations altogether. We 

have identified 9 + 6 + 8 = 23  operations, plus of course 

the identity giving a total of 24. This is the size of the 

rotational symmetry group of the cube. There are an 

additional 24 symmetry operations that arise from 

reflections. 

A

B

C

D
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EXERCISE 16: 

The rotation group is {I, R, R2, A, B, C} where R is a 120° 

rotation about the centre, and A, B, C are 180° rotations 

about the three axes of symmetry. This shape has the same 

rotation group as the equilateral triangle. 

 

EXERCISE 17: 

(a) C; (b) D; (c) D; (d) E; (e) B 

 

EXERCISE 18: There is only one: 

 1 a b 

1 1 a b 

a a b 1 

b b 1 a 

 

EXERCISE 19: 

 1 A A2 

1 1 A A2 

A A A2 1 

A2 A2 1 A 

 

EXERCISE 20: 

(a) (BC)2 = B(CB)C = BB2CC = B3C2 = 1; 

 

(b) B2A3 = B(BA)AA = BA3(BA)A = BA3A3BA 

               = BA6(BA) = BA6A3B = BA9B 

               = BA2B = BAAB = A3BAB = A3A3BB = A6B2; 

 

(c) C3A−2 = CA5 = A5C; 
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(d) (ABC)−1 = C−1B−1A−1 = CB2A6 = (CB)BA6 

                               = B2CBA6 = B2B2CA6 = B4A6C 

                    = BAA5C = A3BAA4C = …  

                    = (A3)6BC = A18BC = A4BC. 

 

EXERCISE 21: 

(a) Associative: 

x  (R • S) • T 

 x belongs to exactly one of R, S and T 

 x  R • (S • T). 

Alternatively we can use Venn Diagrams. 

 

R • S  

 

 

 

 

 

S • T 

 

 

 

 

 

(R • S) • T = R • (S • T) 

 

 

 

 

R 

S 

T 

R 

S 

T 

R 

S 

T 
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The empty set, , is the identity. 

Every set is its own inverse since S • S = . 

X is abelian since both intersection and union are 

commutative. 

(b) Every element, except the identity, has order 2. 

This is therefore the maximum order. 

 

 


