3. EXAMPLES OF GROUPS

83.1. Abstract Groups and the Group

Axioms

Before we surf the wide ocean of group theory let’s
review the definition of a group so that we’ll easily
recognise one when we come across it.

For Galois, a group involved the symmetry of
certain algebraic expressions involving the zeros of a
polynomial. After his death the concept was abstracted
from its polynomial setting as the emphasis shifted to
groups of ‘substitutions’ (as they were called at the time)
or ‘permutations’ (as we refer to them now). The symbols
being permuted could now can be anything, not just zeros
of polynomials. This was the first stage in the process of
abstraction.

A considerable body of theory was built up and
many books were written on the subject until it was
realised that almost every theorem could be derived from
just four simple facts. That resulted in the process of
abstraction being continued one stage further as groups
and permutations were uncoupled. Now any algebraic
system that behaves in a manner described by these four
axioms could be called a group.

‘Group’ is the name given to a certain type of
algebraic structure that satisfies four basic properties
called the group axioms or group laws. On the basis of
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these axioms it’s possible to develop a considerable body
of theory — group theory. We can prove theorems about
groups without needing to know what they’re groups of,
just by basing the proofs on these four axioms.

The advantage of this abstract approach is that we
can deal with countless algebraic systems all at once. A
single theorem in group theory immediately becomes a
theorem for groups of matrices, groups of numbers,
groups of permutations, and so on.

A binary operation = on a set G is a function that

associates with every ordered pair of elements a, b € G, a
unique element of G, denoted by a * b.

A group (G, *) is a set G together with a binary operation
* such that:
(1) Closure Law: axb e Gforalla, b € G.
(2) Associative Law:
(@axb)xc=a=(bxc)foralla,b,ceG.
(3) Identity Law: There exists e € G such that:
axe=a=exa foralla e G.

(4) Inverse Law: For all a € G there exists b € G such
thataxb=e=b=a.

COMMENTS

(1) The closure law is redundant because it’s implicit in
the definition of a binary operation. However it’s
usually included for emphasis.
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(2) The element e is called the identity for G. We’ll show
later that it must be unique, that is, a group can only
have one identity for its operation.

(3) The element b in the last axiom is called the inverse
of a (under *). It too is unique. Every element has

exactly one inverse.
(4) The inverse of the inverse of an element is that
element itself.
An abelian group G (so called to honour the
Norwegian mathematician, Abel, whose work preceded
Galois) is one that, in addition, satisfies the following:

Commutative Law: a*b=b=*aforalla,b e G.

§3.2. Subgroups

Groups are not isolated structures. Rather they’re
nested, one inside another, like a set of Russian dolls.
Open up a group and you’ll usually find lots of smaller
groups living inside of it. They are called ‘subgroups’ of
the larger group.

A subset H of G is a subgroup if:
(1) axb e Hforalla,b e H;

(2) e (the identity element of G) e H;
(3) the inverse of every element of H is in H.
Notation: H < G.
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NOTES:

(1) We often summarise these by saying that H is closed
under the operation, under the identity and under
inverses.

(2) These properties correspond to three of the four group
axioms. The associative law doesn’t have to be
verified for a subgroup because it holds throughout all
of the group. So subgroups are groups in their own
right.

(3) The operations in H and G have to be the same. You
can’t have a subset of a group of numbers under
addition being a subgroup under multiplication. For
example the group of positive real numbers under
multiplication is not a subgroup of the group of all real
numbers under addition.

(4) Every group is a subgroup of itself.

The order of a group G is its number of elements.
If this is finite we say that G is a finite group. Otherwise
it’s an infinite group. This distinction is important
because the theories of finite groups and infinite groups
use somewhat different methods. For example in finite
group theory the divisibility properties of the natural
numbers play an important role.

Notation: The order of the group G is denoted by |G|.
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We’re now ready to go hunting for groups and
we’ll find that they’re native to practically every
continent of the world of mathematics.

§3.3. Groups of Numbers

The easiest place to find groups is in the various
number systems. Numbers can be both added and
multiplied but if we focus our attention on just one of
these we can produce examples of groups. And because
the commutative law holds for addition and multiplication
of numbers the groups we’ll get will all be abelian.

Let’s begin with (Z, +), the group of integers under
addition. If you replace = in the group axioms by + you’ll
see that they all hold. The identity, e, in this case is the
number 0 and the inverse of x is —x.

Now (Z, x) is not a group. The problem lies with
inverses under multiplication. Not only does O fail to have
an inverse, numbers such as 2 have no inverse, not within
the system of integers at any rate, since %2 is not an
integer. It’s not enough for an inverse to exist. It has to lie
within the set under consideration. In fact the only
integers which do have multiplicative inverses within Z
are £1.

Within the group of integers under addition there’s
the subgroup 27Z of even integers (even + even is even, 0
is even and minus an even is even). Other subgroups are
mZ for any m, the multiples of a fixed integer m.

The rational numbers under addition form the
group (Q, +) (for example rational plus rational is
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rational) and (Z, +) is one of its many subgroups. Under
multiplication (Q, x) almost qualifies. Only zero fails to
have an inverse under multiplication. If we exclude zero,
and denote the set of non-zero rationals by Q¥ we do get
a group. But note that we have to rethink the closure law.
It’s no longer enough that the product of two rationals is
a rational. We need the product of two non-zero rationals
to be a non-zero rational. Fortunately this is so by the
cancellation law for rationals:
Xy =0 implies that x=0ory = 0.

One subgroup of (Q*, x) is the set of all powers of
2: {2" | n € Z}. This is because 2™.2" = 2™ the identity
under multiplication is 1 = 2%and (2"t = 2™

A really small subgroup of (Q*, x) consists just of
+1. An even smaller one is {1}.

In fact for any group G the subset {e}, consisting
of just the identity, is a subgroup known as the trivial
subgroup of G. Check it:

D exe=¢;

(2) {e} contains the identity;

(3) the inverse of e is e.

Things work for the real and complex numbers in
very much the same way. The group (C, +) contains the
subgroup (R, +). Another subgroup is the set of imaginary
numbers (including 0). Within (R, +) you find (Q, +) and
a subgroup of (Q, +) is (Z, +) etc.

The non-zero complex numbers  under
multiplication form the group (C*, x) which in turn
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contains (R*, x). One of the many subgroups of (R*, x) is
(Q* x) and (Q*, x) has within it the subgroup (Q*, x) of
positive rationals.

For groups of numbers we usually omit the
operation and just write Q or Q* etc. There’s no ambiguity
because there’s a simple way to determine whether the
operation is intended to be addition or multiplication, by
a process of elimination. If the set contains zero, such as
R, it can’t be a group under multiplication because zero
doesn’t have an inverse. But if zero is excluded it can’t be
a group under addition because zero is the identity under
addition and so must be included.

SO0<Z<Q<R<Cand1<Q'<Q*<R*<C(C*
Notice that it’s usual to denote the trivial subgroup by just
0 or 1 depending on the operation.

Of course if the operation is neither addition nor
multiplication, and there’s no reason why it has to be one
or the other, then it must be spelt out explicitly.

Here’s a group of numbers where the operation is
neither addition nor multiplication.

Example 1: Let G ={x € R|x= -1} and define
X*Yy=X+Yy+Xy.

Then (G, =) is a group.

Closure: Ifx,y e Gthenx*y=(x+1)(y+1)-1=#-1

sox*y e G.
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Associative law: Since this is an operation we’ve never
seen before we must check associativity:
(x*y)*z=(x*y)+z+ (x*y)z
=(xt+y+xy)+z+(x+y+xy)z
=X+Yy+Z+XYy+XZ+YZ+XYZ
and x * (y * 2) = x + (y * ) + X(y * 2)
=x+y+z+yz+xy+z+yz)
=X+y+2zZ+Xy+yz+XZ+xyz

Identity: The identity is 0.

i =X
Inverse: the inverse of x € G is Y+l since

g, SN (_Xj =0
XTx+1 " Ax+1) =Y
Note that the denominator is non-zero since x = —1.

—X 1
Moreover, N+l - -1+ S+l 7 -1.

Another type of number is an integer-modulo-m,
for some positive integer modulus m. Under addition
these give the groups (Zm, +). Because the operation is
different to ordinary addition (eg. 1 + 1 =0mod 2) they’re
not subgroups of (Z, +). In fact none of them is a subgroup
of any of the others.

Under multiplication we may have to exclude more
than just 0. Consider Zio under multiplication. The
numbers 2, 4, 5, 6 and 8 fail to have inverses under
multiplication because they’re not coprime to 10. For
example if y was the inverse of 6 mod 10 then 6y would
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have to be 1 plus a multiple of 10, which is clearly
impossible.

Only 1, 3, 7 and 9 have inverses mod 10 and these
inverses are 1, 7, 3 and 9 respectively. [Remember, for
example, that 3.7 =21 =1 mod 10.]

Moreover the set {1, 3, 7, 9} is closed under
multiplication as can be seen if we write out the group
table:

AL 3 / 9
11 1 3 7 9
31 3 9 1 7
7] 7 1 9 3
91 9 / 3 1

The associative law holds because it holds for integers. So
we get a group.

We denote the set of invertible elements of Z, (the
ones that have inverses, or equivalently, are coprime to
m) by Z.*. This will always be a group because the
product of two invertible elements is invertible.

Now the group Z,* also has four elements {1, 5, 7, 11}
and the group table is:
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VAV 5 / 11
11 1 5 / 11

5| 5 1 11 7
77 11 1 S
111 11 7 S 1

In Chapter 1 we encountered the mattress group which
also has order 4. Its table is:

Om> -

O|w>|l—|—
WO—=|>|>
> —|O|w|w
—|> w00

Which of the tables, the one for Zo* or the one for
Z15" does this most resemble? The answer is Zi,*. The
mattress group and Zj;,* follow the same pattern:
everything squared is the identity and the product of any
two of the non-identity elements is equal to the third. In
fact we can turn one table into the other by the code

l-1,A—>5B—>7C—11.

The group Zio* on the other hand is rather different.
It can’t be changed into the mattress group by any
relabelling. The most obvious difference is that in Zo*
there are only 2 solutions to the equation x? = 1 while in
both the mattress group and Zi,* all four elements satisfy
this equation.
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If two groups have essentially the same structure,
meaning that the group table for one can be turned into
the table for the other by a suitable renaming, we say that
the groups are isomorphic. So Z;,* is isomorphic to the
mattress group but neither of these is isomorphic to Zo*.
(We’ll define isomorphism a little more formally later.)

So there are at least two, essentially different,
groups of order 4. In fact, as we’ll see later, these are the
only two. There are only finitely many groups with any
given finite order (up to isomorphism) and one of the
fundamental problems of finite group theory is to classify
them.

83.4. Groups of Permutations

The symmetric group, S, is the group of all
permutations on {1, 2, ..., n}. An important subgroup is
the alternating group, A, the group of all even
permutations.

Another subgroup of S, is the set H of all
permutations that fix the symbol 1.

The elements of H permute the remaining elements
2, 3, ..., n in all the (n — 1)! possible ways. By
renumbering these symbols as 1, 2, ..., n — 1 we can turn
this group into a copy of S,—;. In other words H is
isomorphic to Sp.

An important subgroup of S, is called the Klein
group (after the mathematician Felix Klein) or the
Viergruppe (German for the ‘four-group’). It’s often

133



denoted by V4 which is a bit silly in a way because both
the V for ‘vier’ and the 4 tell us that there are four

elements: V4 = {l, (12)(34), (13)(24), (14)(23)}.

Its group table is:

\Z
I
(12)(34)
(13)(24)
(14)(23)

(12)(34) (13)(24) (14)(23)

(12)(34)

(13)(24)

(14)(23)

(12)(34)

(14)(23)

(13)(24

(13)(24)

(14)(23)

(12)(34)

(14)(23)

(13)(24)

(12)(34)

Notice that once again this has the same pattern as
both Z1,* and the mattress group. V4 is a permutation
group that’s isomorphic to these other groups.

For many decades groups were only groups of
permutations. Introducing the group axioms freed us from
this connection and enabled us to look for groups
anywhere. But in fact it didn’t really lead us to find any
extra groups, just different disguises for the same groups.
This is because every group is isomorphic to a group of
permutations. Multiplication of the elements of a group G
by a fixed element is a permutation and these
permutations form a group that’s isomorphic to G.

This 1s known as Cayley’s Theorem and we’ll give
a formal proof of it later once we’ve defined the word
‘isomorphic’ properly. But you can see it working in the
following example.
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Take the group Zi,":

VAV S 7 11
1] 1 &) 7 11

51 5 1 11 7
7 11 1 5
111 11 / 5 1

Multiplication on the right by 5 permutes these four
elements in a way that can be described in cycle notation
as (1 5)(7 11). The corresponding permutations for all
four elements are:

|
(15)(7 11)
(17)(511)
1] 1))

P (~or|—

Now relabelling the elements of Z3,* by the code:
151,552, 7-3, 114 these four permutations become
I, (12)(34), (13)(24), (14)(23), the elements of V..

83.5. Groups of Polynomials, Functions

and Vectors

Polynomials can be added and subtracted, and the
set of all polynomials in x over a field F forms an abelian
group F[x]. Polynomials can also be multiplied but we
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don’t get a group, even if we exclude the zero polynomial,

1 .
because expressions such as ;-7 are not polynomials.

Functions f: R — R can be added, and again we get
an abelian group. Multiplying functions, in the way that
we might multiply the functions f(x) = x? and g(x) = sin x
to get the function f(x)g(x) = x2sin x, raises problems with
inverses. For example g doesn’t have an inverse. What

1
about cosec x = Sinx ’ ? That’s not a function from Rto R

since it’s undefined when x = nz for any integer n.

But there’s another way of multiplying functions —
function of a function. For any set X, if we have two
functions f, g from X to X we can form their product fg,
defined by (fg)(x) = g(f(x)), that is, we first apply f and
then apply g. If f(x) = x? and g(x) = sin x then the product
fg is the function (fg)(x) = sin(x?), while gf is the function
(gf)(x) = (sin x)?, which we normally write as sin?x.
Clearly, if we do get a group out of this it will be non-
abelian.

In fact the groups we get out of this operation are
the familiar groups of permutations on a set X. But X will
be mostly infinite and in such cases the examples will
look rather different to the usual permutation groups.
Here’s an example of a finite group of permutations on an
infinite set.
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Consider the functions:

a(x) = x,

b(x) =1-x,
0= 5.
409 =7~
e00= X5
£(x) = ﬁ |

Since these are undefined for x = 0 and x = 1 we must
exclude these values from the domain. So let’s take X to
be the set R — {0, 1}, that is, the set of all real numbers
excluding 0 and 1. Not only are all the above defined for
every X € X, a quick check will reveal that their range is
also X and that these are 1-1 and onto functions on X.

Now d2(x) = d(d(x)) = —— = L o) and
1-77%
bR =T = x= W

so that d? = e and bd = c.
We can complete the group table for this group of order
6:
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abocdef
alalblc|d|e]|f
bibla|d|c|f|e
clclela|f|b]|d
did{f|{ble|la]|cC
elejc|fla|d]|b
f|f|{d|e|bfc|a

Note that d ® = de = a, the identity, so d has order 3,

b? = a, and so d has order 2, and bd = ¢ = eb = d!b.

So this group is isomorphic to the dihedral group
Ds=(A, B|A*=1,B?=1, BA=A"'B),

with A corresponding to d and B corresponding to b.

Among the axioms for a vector space V, over a
field F, are the group axioms for V to be a group under
addition. In fact if we ignore scalar multiplication, vector
spaces are just abelian groups. So we can produce
examples of abelian groups by taking the set of all vectors
(X1, X2, ..., Xn) With each x;j € F, under the operation of
addition.

If we want to get a finite group we’d need to take F
to be a finite field, of which the best-known examples are
the integers modulo a prime.

We denote the set of all vectors (xi, Xz, ... , Xn), With
each x; € Z, by

Ly ® Ly ® ... ® Zy (n copies of Zy).
We will explain the full meaning of the symbol @ in a
later chapter.

138



But since we’re only adding these components
there’s no need for them to come from a field. In other
words p need not be prime.

Zs ® Zs @ Zs is the set of all vectors of the form (X,
y, Z) where X, y, z € Zs. With 6 choices for each
component this gives a group of order 6% = 216. It isn’t
even necessary for the modulus to be the same for each
component. So Zs @ Zs is a group, under addition, of
order 24, consisting of all vectors (X, y) where

XeZsandy € Ze.
Here (3,5) +(2,4) =(1, 3)since 3+2 =1 (mod 4) and 5
+4 =3 (mod 6).

§3.6. Groups of Matrices

If F is a field GL(n, F) denotes the group of all
invertible n x n matrices over F under multiplication. The
phrase ‘over F” means that the components come from F
and ‘under multiplication’ means that the operation is
matrix multiplication.

This group is called the general linear group of
degree n over F. Checking the axioms needs a little non-
trivial knowledge about matrices. We know that the
associative law holds for matrix multiplication. Checking
the closure law requires us to know that the product of
two invertible matrices is invertible. And we need to
know more than just the fact that every invertible matrix
has an inverse. We need to observe that such an inverse is
itself invertible.
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An interesting subgroup of GL(n, F) is T*(n, F) the
set of all n x n upper-triangular matrices over F, that is,
n x n matrices of the form:

di1 di2 413 ... ain
0 agp ars... an
0 0 asz... as
00 0 ..a
where each diagonal component is non-zero.

Check out for yourself that this set is closed under
multiplication and that the inverse of any one of these
matrices again has the same form.

Then there are the lower triangular matrices
T-(n, F) which are the transposes of the upper triangular
ones. The intersection of these are the invertible diagonal
matrices D(n, F).

It’s closed under multiplication, identity and
inverses simply because each of T*(n, F) and T-(n, F) are.
This is a special case of the general fact that:

The intersection of any collection of subgroups is
itself a subgroup.

Within D(n, F) we have the non-zero scalar
matrices S(n, F). These are simply the diagonal matrices
that have the same non-zero entry down the diagonal, that
IS, non-zero scalar multiples of the identity matrix.

140



Another interesting subgroup of T*(n, F) is the
group of uni-upper-triangular matrices UT*(n, F).
These are the upper-triangular matrices with 1’s down the
diagonal:

1 appaiz... an

0 1 axg... an

00 1.. adsn

000 ..1
And inside T-(n, F) we have the uni-lower-triangular
matrices UT-(n, F).
We can summarise the connections between these
subgroups in a so-called ‘lattice diagram’:

GL(n, F)
T°(n, F) T(n, F)
(n,F
UT'(n, F) J UT(n, F)
S(n, F)
1

Here the lines indicate subgroup relationships, with
the lower group being a subgroup of the group at the
higher end of the line.

141



Another very important subgroup of GL(n, F) is
SL(n, F) consisting of all the matrices with determinant
1. It’s called the special linear group of degree n over
F. We could incorporate this into our lattice of subgroups
but including its intersections with the other subgroups
would make the diagram very messy.

The lattice of subgroups of a group G is such a
picture of all its subgroups. One subgroup is contained in
another if and only if there is an ascending path in the
diagram from the smaller to the larger. The intersection
of two subgroups is the largest subgroup contained in
them both and is easily picked out from the diagram.

If F is a finite field, such as Z, we get a finite group.
The group GL(n, Z,) is generally written as GL(n, p).

Matrix groups provide a very rich source of
examples of groups, both abelian and non-abelian. In fact,
since every finite group is isomorphic to a group of
permutations, and every permutation can be represented
by a permutation matrix it follows that every finite group
IS isomorphic to some matrix group. This fact provides
the basis for representation theory which we’ll study in a
later chapter.

§3.7. Symmetry Groups

Symmetry can be found in many places, in art,
graphic design, music, architecture, in the natural world
and in science. And there are many types of symmetry.
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There’s the mirror symmetry we expect to find in the
human face, there’s the rotational symmetry such as you
find in many flowers and the translational symmetry
that’s found in a repetitive piece of music or a recurring
decimal expansion. Sometimes the symmetry is a
combination of translational, rotational and mirror
symmetry as in a honeycomb or a brick wall.

Poetry exhibits aspects of symmetry in its rhyming
patterns and physical laws involve symmetry. Even
asymmetry makes use of symmetry for its effect relies on
our unsatisfied expectation of symmetry.

But what really is symmetry? The most useful
definition is in terms of operations that keep something
the same. The human face is never exactly symmetrical,
but we imagine it to have mirror symmetry about a
vertical axis of symmetry. If reflected
left-to-right in this axis a face appears to
be the same. The reflection operation is
therefore a symmetry operation for the
face.

So whenever we have an axis of
symmetry we have a symmetry
operation. In this case the symmetry is
mirror symmetry (though for a 2-
dimensional shape we can also think of it as a 180°
rotation in a third dimension). But, as we saw with the
square there’s rotational symmetry as well.
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The infinite pattern of bricks below exhibits two
other forms of symmetry, translational symmetry and
glide symmetry. A translation is a movement in a
s me———es - Celtain distance by a certain

.-—--—- amount and if an infinite

e et == pattern is fixed by such a
BN s m s translation it is said to have
L e e e translational  symmetry. The
B s e ema e Drick pattern  has horizontal
EEN e e translational symmetry through
one brick length (or any integer multiple of this distance).

A glide is a reflection in an axis followed by a
translation along that axis. The brick pattern has
horizontal axes of symmetry running through the
midpoints of the bricks but the lines which run between
the rows of bricks are not mirror axes. Yet if you reflect
in such a line and then translate by half a brick length, the
pattern snaps back into place. So the pattern is fixed as a
whole by this glide. A set of footprints only has glide
symmetry.

oN: o0: N
~__? ~_5' ps

Isometries are distance-preserving functions. They
include reflections, rotations, translations and glides (in
two dimensions these are the only isometries). A
symmetry operation for a shape is an isometry that fixes
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the shape as a whole. While individual points are moved
by the operation the whole shape occupies exactly the
same region of space.

It’s clear that if you multiply one symmetry
operation by another (that is, follow one by another) you
get a symmetry operation. The identity is always a
symmetry operation and the inverse of a symmetry
operation is a symmetry operation. So the set of all
symmetry operations for a shape forms a group, called the
symmetry group of the shape.

Castle Turrets:

The machicolations on a castle wall form the
jagged outlines from which archers can fire their arrows.
An infinitely long pattern of this type has translational
symmetry in that if you translate the pattern through a
certain distance it remains unchanged — each turret just
gets moved on to the next.

There’s also reflectional symmetry in the infinitely
many vertical axes of symmetry (the horizontal axis is not
an axis of symmetry). Then there’s 180° rotational
symmetry about the centres indicated by the dots. Finally
there is what is called glide symmetry along the
horizontal axis. Reflecting the pattern of turrets in the
horizontal axis and then translating half a turret distance,
every point on the pattern is moved to an equivalent one.
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The sine curve also exhibits this same type of symmetry.
If T is the
translation that takes

: : each peak to the next
| _ on its right, R is the

180° rotation about
one of the points
where the curve cuts
the x-axis, M is the
reflection in the
vertical axis |mmed|ately to the right of this point and G
is the glide that takes each peak to the next trough to the
right then:
T=G? R=GM,M?=[and GM = MG™.
The symmetry group of this pattern is generated by G and
M alone and is in fact the infinite dihedral group
(G,M|M2=1, GM=MG™?),

Railway lines:

A set of railway tracks is another infinite repeating
pattern. But unlike the sine curve or the castle turrets, the
horizontal axis is an axis of reflectional symmetry and not
just an axis of glide symmetry.

As well, there are infinitely many vertical axes of
symmetry and infinitely many centres of 2-fold, that is
180°, rotational symmetry. And finally there are glides
built up from these reflections and translations.
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If T denotes the translation that takes each ‘railway
sleeper’ to the next on the right, H the reflection in the
horizontal axis and V the reflection in one of the vertical
axes of symmetry then the group of symmetries is the
infinite group

(T'H,V|H?2=V2=1 TH=HT, TV=VT? HV =VH).

The people who are most interested in symmetry
groups, particularly for 3 dimensional patterns, are
crystallographers. Crystallography is the branch of
chemistry that deals with the possible crystal lattices for
various substances and the crystallographers long ago
classified all possible symmetry groups in 2 and 3
dimensions.

8§3.8. Group Tables
A finite group can be described by displaying its
group table as follows:
* y

oooooooooooooo

The set {a, b, c} becomes a group under the binary
operation defined by the following table.

147



*

O T Q

o (T|o |
QDO (T|T
T (O]|O

Given a table, however, it’s not always easy to
verify that it’s a group table. The closure, identity and
inverse axioms are easy to check but the associative law
would involve a considerable amount of laborious
checking. The quickest way to check the associative law
Is in fact to construct a group (where you know the
associative law holds) and show that it’s isomorphic to
the one in the given table.

For example, to show that the above table is a group
table we would need to check that (xy)z = x(yz) for 27
combinations of x, y and z. But we can instead observe
that G = {1, o, w?} is a group under multiplication, where
o = €23 is a non-real cube root of unity and that the code
1-—a, o—b, o?>—c transforms the group table for G to the
one above.

83.9. Group Presentations

The above group can be described very concisely
by the notation (A | A3=1). This is called a presentation
for the group with the first part being a list of generators
(in this case there’s just one). A set of generators is a
subset of the group such that every element is a product
of powers of the generators. The second part of the
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description is a list of the relations that generate all the
relations that hold between the generators.

The relation A3 = 1 is not the only relation that
holds in this group. We also have A®=1, A°=1, ... not to
mention A= = 1, A® = 1, ... But all of these are
consequences of the given one and so they may be
omitted.

The trivial group also has a generator A such that
A3 =1, so why doesn’t this notation refer to that group as
well? The assumption is not simply that the given
relations hold in the group but that any relation which
does hold is a consequence of the stated ones. In the trivial
group we also have A =1 and A% = 1, but these can’t be
deduced from the relation A3 = 1.

This is only a fairly informal definition of
presentations, but it will suffice for now. A more rigorous
definition in terms of quotient groups of free groups will
be given in a later chapter.

The relations can always be put in the form R =1,
though it’s not always convenient to do so. When a
relation is expressed in this form the expression R is
called a relator and often just the relator is given. So the
above group could be expressed as (A | A3).

It’s even permissible to mix relators and relations
in the same presentation. The Klein group, V4, has the
presentation (A, B | A2, B, AB = BA).

Other presentations for V, are

(A, B| A% B?, (AB)?) and
(A, B,C| A% B? C? AB =C =BA).
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Here you see yet another small variation in the notation
as a shortcut, that of having a chain of equalities.

A very common presentation for the dihedral group
of order 8 is:
Ds = (A, BJA* B?, BA = A1B).
More generally the dihedral group of order 2n can be
defined by the presentation:
Do ={(A, B| A", B2, BA = A'B).

In principle all the information about a group is
locked up in such a compact presentation but it isn’t
always easy to release it. For many presentations, such as
the one above for the dihedral group, we can argue that
every element has the form A'BS® for some integers r, s.
That is because the relation BA = A~!B can be interpreted
by saying that if we move a B past an A, the B doesn’t
change but the A is inverted.

Now a typical element of the group is a product of
powers of the generators A and B, such as ASBAB3A.
Using the relation BA = A™'B we can move all the B’s
past all the A’s to the back. The relation acts a bit like the
commutative law, except that the power of A will not
simply be the sum of all the powers scattered throughout
the expression. For this example we’d have

A’BA?B3A = AA’BB3A = A'B*A = A’AB*

(the last A gets inverted 4 times by B* so remains as A)
= A%B%,

Of course since B2 = 1 this simplifies further to A8

and if n is 8 or less we could reduce this further. But
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whenever you have a relation of the form BA = A*B
anything generated by A and B can be expressed in the
form A'BS.

For the dihedral group (A, B | A", B2, BA = A!B)
a typical element can be put in the form A"B® where:

O<r<nands=0orl.

Moreover these 2n expressions represent distinct
elements so we can infer that the group has order 2n.

With the elements written as:

1, A, A? ..., A1 B, AB, A%B, ..., A"'B

we can prepare a group table. To multiply any pair of
elements we simply use the rule (valid for dihedral groups
but not for groups in general) that moving a B past an A
inverts the A but leaves the B unchanged. For example
A’BA3 = A’A—=B = A?B. And once we have the group
table we can investigate the properties of the group fully.

Things are not always that easy. Given a very
complicated presentation we may not even be able to
decide whether the group is finite or infinite, or even
whether the group has more than one element!

The Word Problem for groups asks the following:

WORD PROBLEM
Find an algorithm which can determine whether a
given word in a group described by a given
presentation is equal to the identity.
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The Word Problem is unsolvable. It’s not simply
that nobody has yet found such an algorithm. No, a proof
has been given that no such algorithm can possibly exist!

Fortunately in practice things are not quite so
gloomy. There’s an algorithm, called the Todd Coxeter
algorithm which mostly works. (We’ll visit it in a later
chapter.) It’s an algorithm that isn’t completely
deterministic in that at one place in each cycle a choice
has to be made. Make a good choice each time and you’ll
get an answer. The algorithm is reliable in the sense that
you’ll never get a wrong answer. But it may fail to
terminate.

An important class of groups are the free groups.
These are groups with generators but no relators. The free
group on one generator is (A| ), which is isomorphic to Z,
with A" — n. It can be denoted by F.

The free group on 2 generators, F, can be presented
as (A, B| ). The elements are words on A, B and their
inverses and every element is expressible as a unique
reduced word, that is a word in which adjacent pairs of a
generator and its inverse are removed. Multiplication is
by concatenation followed by cancelling adjacent pairs of
generators and inverses.

Example 2:
In (A, B| ), ABA™B x B'ABBA'= ABBBA™
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EXERCISES FOR CHAPTER 3

EXERCISE 1: Which of the following subsets of Z are
groups under addition?

A = the set of even integers;

B = the set of odd integers;

C = the set of non-negative integers;

D ={0};

E = the set of integers which are expressible as 42m

+ 1023n for integers m, n.

EXERCISE 2: Which of the following subsets of C are
groups under multiplication?

A = the set of non-zero rational numbers;

B = the set of positive integers;

c={1,-1,i,-i};

D ={1, %, 2};

E={a+bila>0}

F={1,n n? n ..}

EXERCISE 3: Let G = {Xx € R | x# 1} and define
X*Yy=Xy—X-—-Yy+2.
Prove that (G, *) is a group.

EXERCISE 4:

Prove that {I, (12), (345), (354), (12)(345), (12)(354)} is
a group.
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EXERCISE 5:

Jack and Jill are going out together, as are Romeo and
Juliet. Tonight they’re going out on a double date, with
Jack and Jill sitting in the front seat of their red
convertible and with Romeo and Juliet cuddling in the
back. It’s a long drive and so every so often they stop and
change drivers. But at all times Jack and Jill must sit
together and so must Romeo and Juliet, so not every
permutation on the set {Jack, Jill, Romeo, Juliet} is
permitted. Show that the permutations that keep each
couple together form a group.

EXERCISE 6: Which of the following are groups under
polynomial addition:
(@) The set of all real polynomials that have x — 1
as a factor;
(b) The set of all real polynomials of even degree,
together with O;
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(c) The set of all integer polynomials whose sum of
coefficients is even;

(d) The set of all integer polynomials where every
coefficient is odd.

EXERCISE 7: In the group Z4 @ Zs @ Zj, perform the
following additions:

(@ (3,2,7)+(2,1,8);

(b) (0, 4,2) + (1, 4, 3);

(©) (2, 3,4) + (2, 2, 6).

EXERCISE 8: Show that the set of all real matrices of

1x). : L
the form 01 )1s agroup under matrix multiplication.
Does it satisfy the commutative law?

EXERCISE 9: Find the rotation group of a
parallelogram:

EXERCISE 10: Find the rotation group of a diamond
shape and write out its group table.
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EXERCISE 11: Find the rotation group of the insignia of
the Isle of Man:

EXERCISE 12: Find the rotation groups of the letters of
the alphabet (use the most symmetric possible way of
writing each letter).

ABCDEFGHIJKLMNOPORSTUVWXYZ

EXERCISE 13: Find the symmetry group of a regular

hexagon.

EXERCISE 14: Find the order of the rotation group of a
tetrahedron (triangular pyramid with four identical
equilateral triangular faces).
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EXERCISE 15: Find the order of the rotation group of a
cube.

EXERCISE 16: Find the rotation group of the following
shape:

EXERCISE 17: G is a group given by the following
group table:

A B CDEF
A/A|B|C|D|E |F
B/B|A|D|C|F|E
CIC|IE|A|F|B|D
D D|IF|BIE|A|C
E|IE|C|F|A|D|B
FIFIDIE|B|C]A

Calculate the following:
(a) BD;
(b) FACE;
(c) E™
(d) D’B3FE;
(e) (BC)?BF.
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EXERCISE 18: Find all possible group tables on the set
{1, a, b} where 1 is the identity.

EXERCISE 19: Construct the group table for the group
(AAS).

EXERCISE 20: In the group
(A, B, C| A’ B C? BA=A%B, CA=AC, CB=B?C)
express each of the following in the form A9B'C *

(a) (BC)?;

(b) B2A3;

(c) C3AZ

(d) (ABC)™;

() (AB)®.

EXERCISE 21
Let X be asetand let X denote the set of all subsets of
X.ForR,S e pXdefineReS=(RUS)-(RNYS).

(a) Prove that (¢ X, ) is an abelian group.

(b) What is the greatest order of any element of @ X?
HINT: R e S = {x| x belongs to exactly one of R, S}.
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SOLUTIONS FOR CHAPTER 3

EXERCISE 1:
A/ DE

EXERCISE 2:
A C

EXERCISE 3:

Closure: Leta,b € G,soa=1and b = 1.

Suppose a* b =1.

Thenab-a-b+2=1andso (a—1)(b - 1) =0 which

implies thata = 1 or b =1, a contradiction.

Associative: Unlike the examples in exercise 1, this is a

totally new operation that we have never encountered

before. We must therefore carefully check the associative
law.

(axb)xc=(axb)c-(a*b)-c+2
=(@ab-a-b+2)c—-(@b-a-b+2)-c+2
—abc—-ac—bc+2c-ab+a+b-2-c+2
—abc—ab-ac-bc+a+b+c

Similarly a = (b = ¢) has the same value (we can actually

see this by the symmetry of the expression.

Identity: An identity, e, would have to satisfy: e » x = X

=x=*eforall x € G, that is:

ex—e—x+2=x0r(e—2)(x—1)=0 forall x.
Clearly e = 2 works. We can now check that 2 is indeed
the identity.
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Inverses: Ifx*y=2 thenxy—-x—-y+2=2.

X+ 2
Soy(x—-1)=x+2and henceyzm.
This exists for all x # 1, i.e. for all x € G. But we must
also check that it is itself an element of G. Clearly this is

X+ 2
so because —— = 1 for all x = 1.

x—1
EXERCISE 4:
The group table is
I (12) (345)
I I (12) (345)
(12) (12) I (12)(345)
(345) | (345) [(12)(345)| (354)
(354) | (354) |(12)(354) I
(12)(345) | (12)(345) | (345) | (12)(354)
(12)(354) | (12)(354) | (354) (12)
(354) (12)(345) (12)(354)
1| (354) |(12)(345) | (12)(354)
(12) | (12)(354) | (345) (354)
(345) I (12)(354) (12)
(354) | (345 (12) (12)(235)
(12)(345) (12) (354) I
(12)(354) | (12)(345) I (345)

From this we can see that the set is closed under
multiplication, and the fact that | appears in every row and
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column shows that every element has an inverse. The set
contains the identity permutation. Since multiplication of
permutations is associative all four group axioms hold.

EXERCISE 5:

One way is to represent the four young people by real
NUMDErs Xjack, X, Xromeo &Nd Xyuiier @Nd to consider the
algebraic expression E = Xjack-Xsil + Xromeo-Xiuliet.  1Ne
permissible permutations that are allowed are those that
keep the value of E unchanged. This is clearly a group.

Or we can number the positions as follows:

05 |« |0

The permissible permutations are: |, (12), (34), (12)(34),
(13)(24), (14)(23), (1324), (1423). These are the same
permutations in the symmetry group of the square

1 3

4 2
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EXERCISE 6:
(@), (b), (c)

EXERCISE 7:
@ (1,3,5), (b)(1,3,5), (c)(0,0,0).
EXERCISE 8:

1 x+y

1 1 )
Closure: (0 )1()(0 yj = [0 1 ) so the set is closed
under multiplication.

1
Identity: | = (0 (1)) belongs to this set.

Inverses: The inverse of ((1) )1( j IS (é _1Xj , which belongs

to this set.

The commutative law clearly holds, so this is an abelian
group.

EXERCISE 9:

G ={l, R} where R is a 180° rotation.

NOTE: A parallelogram has no axes of symmetry unless
it is a more symmetrical parallelogram such as a rhombus

or a rectangle.
Ly
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EXERCISE 10:

G ={l, R, D, E} where R is a 180° rotation about the
centre and D, E are 180° rotations about the axes
indicated.

E

AN,
/

The group table is:

I R E D

I I R E D

R R I D E

E E D I R

D D E R I
EXERCISE 11:

G ={I, R, R?} where R is a 120° rotation about the centre
and R?is a 240° rotation.

EXERCISE 12:

Each of A,B,C, D, E K, L, M T, UV, Whas one axis
of symmetry (vertical for A, M, T, U, V, W diagonal for L
assuming both arms have the same length, and horizontal
for B, C, D, E, K) so their rotation groups are
{I, R} where R is a 180° flip about these axes.

163



The letters N, S and 1 also have this group as their
rotation group but this time R is a 180° rotation about the
centre.

The letters F, G, J, @ and R have ‘no symmetry’, but
since everything has the identity operation as a symmetry
operation, their rotation group is just {I}.

The letters H and | have the same symmetry as a
rectangle: {I, H, V and R} where H, V and R are a 180°
rotations about the horizontal axis, the vertical axis and
the centre, respectively.

The rotation group of the letter X (if the axes are at
right angles) is the same as that of the square, that is, the
dihedral group of order 8 and the rotation group of the
letter Y (assuming the arms are 120 degrees apart) is De.

The letter O, represented by a circle, has an infinite
symmetry group. Any line through the centre is an axis of
symmetry and any rotation about the centre is a symmetry
operation.

EXERCISE 13:

G={I,R,R> R} R* R, A B,C, D, E F}whereRisa
60° rotation about the centre and A to F are 180° rotations
about the six axes of symmetry.

EXERCISE 14:

There is 3-fold symmetry. Rotations through 120° and
240° about each of the four axes from a vertex to the
midpoint of the opposite face are in the rotation group.
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Less obvious is the 2-fold symmetry. Rotations through
180° about each of the three axes that join the midpoint of
each edge to the midpoint of its opposite edge are in the
rotation group.
The rotation group thus has order 12:
one identity
eight 3-fold rotations (2 about each of 4 axes)
three 2-fold rotations (1 about each of 3 axes)

EXERCISE 15: The most obvious symmetry is the 4-
fold rotational symmetry about each of the three axes
that join the centre of one face to the centre of the
opposite face. For each such axis we have three rotations:
90°, 180° and 270°), giving us 9 rotations. Then there are
the 2-fold rotations about the axes that join the midpoints
of the edges. There are 6 such axes, each associated with
one rotation. Finally there are the rotations about the three
diagonals joining each vertex to the opposite vertex. If
you examine the three edges that come out of each vertex
you will see that there is 3-fold rotational symmetry about
these diagonal axes. That is, a 120° or a 240° rotation
about one of these axes returns the cube to a similar
orientation. This gives 2 symmetry operations for each of
4 axes, a total of 8 symmetry operations altogether. We
have identified 9 + 6 + 8 = 23 operations, plus of course
the identity giving a total of 24. This is the size of the
rotational symmetry group of the cube. There are an
additional 24 symmetry operations that arise from
reflections.
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EXERCISE 16:

The rotation group is {I, R, R, A, B, C} where Ris a 120°
rotation about the centre, and A, B, C are 180° rotations
about the three axes of symmetry. This shape has the same
rotation group as the equilateral triangle.

EXERCISE 17:
@) C; (b)D; () D; () E; (e) B

EXERCISE 18: There is only one:

1 a b

1 1 a b

a a b 1

b b 1 a
EXERCISE 19:

1 A A2

1 1 A A2

A A A2 1

A2 A2 1 A
EXERCISE 20:

(a) (BC)? = B(CB)C = BB2CC = B3C? = 1;
(b) B2A® = B(BA)AA = BA3(BA)A = BASASBA

= BAS(BA) = BASA’B = BA®B

= BA’B = BAAB = ABAB = A’ABB = A’B,
(C) C3A2 = CA® = ASC;
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(d) (ABC)! = C'B'AL = CB2A® = (CB)BA®
= B2CBAS = B2B2CA® = B*ASC
= BAASC = ASBAA'C = ...
= (A%°BC = A8BC = A’BC.

EXERCISE 21:
(a) Associative:
Xe(ReS)eT
<> X belongs to exactly one of R, Sand T
—>XeRe(SeT).
Alternatively we can use Venn Diagrams.

ReS S
NarT
5L

SeT S

R+

AP
ANEA

(ReS)eT=Re(SeT) S

L

—

N
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The empty set, @, is the identity.
Every set is its own inverse since S« S = &.
¢ X Is abelian since both intersection and union are
commutative.
(b) Every element, except the identity, has order 2.
This is therefore the maximum order.
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